4,177 research outputs found

    Synthesis and characterization of phenylethynylcarbonyl terminated novel thermosetting imide compound

    Get PDF
    Phenylethynyl terminated novel imide compound based on 1,3-bis(3-aminophenoxy)benzene (APB) and phenylethynyl trimellitic anhydride (PETA) were prepared. The curing behavior of phenylethynyl terminated imide compound was investigated by differential scanning calorimetry and Fourier transform infrared spectrometry. The curing reaction of phenylethynylcarbonyl end group completed at 220°C, and proceeded much faster than that of phenylethynyl end group. Glass transition temperature of the thermosetting resin from phenylethynylcarbonyl terminated novel imide compound determined by dynamic mechanical analysis was almost the same as that of o-cresolnovolac type epoxy resin. In addition, the thermosetting resin from phenylethynylcarbonyl terminated novel imide compound exhibited excellent thermal and dimensional stabilities. These excellent properties of these phenylethynyl terminated imide compound might be due to the incorporation of alkene group or aromatic ring substitutes in the backbones, which might enhance the chain interaction (molecular packing) and reduce the molecular chain mobility

    Acceleration with Self-Injection for an All-Optical Radiation Source at LNF

    Full text link
    We discuss a new compact gamma-ray source aiming at high spectral density, up to two orders of magnitude higher than currently available bremsstrahlung sources, and conceptually similar to Compton Sources based on conventional linear accelerators. This new source exploits electron bunches from laser-driven electron acceleration in the so-called self-injection scheme and uses a counter-propagating laser pulse to obtain X and gamma-ray emission via Thomson/Compton scattering. The proposed experimental configuration inherently provides a unique test-bed for studies of fundamental open issues of electrodynamics. In view of this, a preliminary discussion of recent results on self-injection with the FLAME laser is also given.Comment: 8 pages, 10 figures, 44 references - Channeling 2012 conferenc

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3: An 115In-NQR study under pressure

    Full text link
    We report on the pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3 by means of nuclear-quadrupole-resonance (NQR) studies conducted under a high pressure. The temperature and pressure dependences of the NQR spectra have revealed a first-order quantum-phase transition (QPT) from an AFM to PM at a critical pressure Pc=2.46 GPa. Despite the lack of an AFM quantum critical point in the P-T phase diagram, we highlight the fact that the unconventional SC occurs in both phases of the AFM and PM. The nuclear spin-lattice relaxation rate 1/T1 in the AFM phase have provided evidence for the uniformly coexisting AFM+SC phase. In the HF-PM phase where AFM fluctuations are not developed, 1/T1 decreases without the coherence peak just below Tc, followed by a power-law like T dependence that indicates an unconventional SC with a line-node gap. Remarkably, Tc has a peak around Pc in the HF-PM phase as well as in the AFM phase. In other words, an SC dome exists with a maximum value of Tc = 230 mK around Pc, indicating that the origin of the pressure-induced HF SC in CeIn3 is not relevant to AFM spin fluctuations but to the emergence of the first-order QPT in CeIn3. When the AFM critical temperature is suppressed at the termination point of the first-order QPT, Pc = 2.46 GPa, the diverging AFM spin-density fluctuations emerge at the critical point from the AFM to PM. The results with CeIn3 leading to a new type of quantum criticality deserve further theoretical investigations

    Validation of cognitive models for collaborative hybrid systems with discrete human input

    Get PDF
    We present a method to validate a cognitive model, based on the cognitive architecture ACT-R, in dynamic humanautomation systems with discrete human input. We are inspired by the general problem of K-choice games as a proxy for many decision making applications in dynamical systems. We model the human as a Markovian controller based on gathered experimental data, that is, a non-deterministic control input with known likelihoods of control actions associated with certain configurations of the state-space. We use reachability analysis to predict the outcome of the resulting discrete-time stochastic hybrid system, in which the outcome is defined as a function of the system trajectory. We suggest that the resulting expected outcomes can be used to validate the cognitive model against actual human subject data. We apply our method to a twochoice game in which the human is tasked with maximizing net coverage of a robotic swarm that can operate under rendezvous or deployment dynamics. We validate the corresponding ACTR cognitive model generated with the data from eight human subjects. The novelty of this work is 1) a method to compute expected outcome in a hybrid dynamical system with a Markov chain model of the human's discrete choice, and 2) application of this method to validation of cognitive models with a database of actual human subject data
    corecore